National Aeronautics and Space Administration

Lyndon B. Johnson Space Center 2101 NASA Parkway Houston, Texas 77058-3696

Reply to Attn of: EA3-10-005

TO:

Alpha Magnetic Spectrometer (AMS) Records

FROM:

EA3/NASA AMS Project Manager

SUBJECT:

AMS Magnet Correlation Report

The AMS magnetic field was measured on December 21, 2009. The enclosed AMS Task Sheets (ATS) MITM091217-50 documents the measured data. The magnetic field was measured outside the magnet at 28 points. The points corresponded to a reasonable subset of external points measuring outward from the AMS origin in the X, Y and Z directions. The data was recorded with a F.W. Bell Model 4048 Gauss Probe. The instrument had a range of 0-20 kG with a resolution of 0.1 G. The magnet was charged to 400 Amps, which is the expected on-orbit operating current.

The model of the AMS magnetic field was used to predict the field level at the same locations. The model was set to correspond to the same 400 Amp charge on the magnet. The predictions were run by Vitaly Choutko, of the Massachusetts Institute of Technology, on Feb. 17, 2010.

A comparison of the measured versus predicted has been completed and is shown in the second enclosure.

The comparison shows that the model is an accurate prediction tool for the AMS magnetic field. The field measurements were root sum squared to take out any angularity bias in the measurement. Two measurements were taken at 1.5 meters from the center of the magnet. These points had the highest measurements and in both cases, the model predicted higher values than the actual magnet (9.9% and 4.2% higher). Four measurements were taken at 2.0 meters from the center of the magnet. These points represented the next highest field levels. These four points show that the model predictions were within 0%, 9%, 17%, and 7%. In all of these cases, the model predictions were higher than the actual measurements.

The measured data does show some small discrepancies in areas where it was either harder to get the probe to the exact location or where the structure of the AMS itself could have had a larger effect on the field measurement. In summary, the AMS model predictions are an acceptable representation the actual measured magnetic field. The model can be used to predictions and magnetic field modeling and the results will accurately represent the actual system.

Sincerely,

Trent D. Martin

Enclosure

Enclosure 1: AMS Task Sheet - MITM091217-50

	SA-A	100000000000000000000000000000000000000	2. JPIC C	MS					AMS-02 T	ASK SHEET (A	ATS)			
3.	Α	CONFIGU	RATION CH	HANGE		\Box	4. ATS N	. M	IITM091217-50	S. VIWE	5. PAGE	1	OF	7
Ţ	PERMA	NENT	П	TEMPOR	ARY	+		0000000	S) NUMBER(S)			-		
P E	В	NONCON	FIGURATIO	N CHANGE	*****									
20750	PART NAI				1	1	tector Name			12. SERIAL/LOT NO.				
	Control of the	omagnet				AMS C	ryomagr	et						
14. /	APPLICAE	BLE DOCUME	:NIS											
	ats title ternal		Mappin	ng of AM	ſS				, , , , , , , , , , , , , , , , , , ,					
	20. OPER 21. OPERATIONS											VER	RIFICATI	ON
-	2. 110.						Print, Type, o	i vviite i	Legibly)		22	TECH	1 23	B. QAVDV
		Ti	nis AT	S contai	ins:									
		•	The	Gauss d	ata ga	there	d durin	g fu	ll field magnet n	napping.				
	1.	Open	this A							0	K	ער		
		_				400					1			
	2.	Reco	rd the	AMS C	ryoma	gnet	field str	eng	th (from CGSE	data)	£	K		
		Cab C	Charge	Amps_	400									
		Hall F	Probe (Gauss <u>+x</u>	/-y/+z	x con	nponen	= 9	400 G_					
				<u>+x</u>	/-y/-z	x com	ponent	= 95	510 G					
				<u>-x</u>	/-y/-z x	com	onent:	= 94	30 G_					
				<u>-x</u>	/+y/ - z	x com	ponent	= 95	510 G					
	3.	Reco	rd the	Model,	range	and r	esolutio	on o	f the Gauss prob	oe .	R	'v		
		Mode	IF.W.	Bell Mo	odel 40	148	Ran	ge 0	− 20 kG Re	solution 0.1 G	1	^		
				•				9		<u> </u>				
24. /	ORIGINAT	00												
	hn He						DATE		25. FINAL ACCEPTANCE S	STAMP AND DATE				
26. P	ROJECT	ENGINEER		-		^	PPROVALS (Printed	or Typed and Signed) 27. QUALITY ENGINEER			-	DATE	
Joe	esph E	Burger	5 13	large	N		2412/	99	Corrado Gargio	alo			DATE	
28.				•					29.					
30.									31.		-			
AMS	Assembly	Task Sheet (/	ATS) Rev 9/	25/06 JH										

	3		5. Page 2	of M091217	7
	AMS-02 TASK SHEET (ATS)	4. ATS NO.	MII	W1091217	-30
	CONTINUATION PAGE	6. MOD NO.			
OPER EQ. NO.	21. OPERATIONS (Print, Type, or Write Legibly				CATION
4.	Measure the external magnetic field around to			22. TECH	23. QA
	Record the position in X,Y,Z from the center Record the Guass level in all three axis (x,y,z position in the figures to follow and record date of the center of the center Record the Guass level in all three axis (x,y,z) position in the figures to follow and record date of the center of the cente	fk			
	71.90 [1826]		MS-02 ORIGIN		
	Coordinate System of A		RK		
	Distance from Upper Support Ring to Lower S				
	Distance from Lower Support Ring to magnet				
	Magnet origin to the floor = 1955mm				
	Diameter of Lower Support Ring = 2770mm				
	Radius from magnet origin to edge of Lower S	mm			
	• •				
		25			
				-1	I

5. Page 3 of 7

AMS-02 TASK SHEET (ATS)

CONTINUATION PAGE

4. ATS NO.

6. MOD NO.

20. OPER	21. OPERATIONS	VERIF	VERIFICATION		
SEQ. NO.	21. OPERATIONS (Print, Type, or Write Legibly)	22 TECH	23. QA/D		
	X		Px		
	18 25	27 19			
	5 4 3 2 I	67891	0		
		70			
	13				

5. Page MITM091217-50 AMS-02 TASK SHEET (ATS) 4. ATS NO. CONTINUATION PAGE 6. MOD NO. VERIFICATION 21. OPERATIONS (Print, Type, or Write Legibly) 20. OPER SEQ. NO. 22. TECH 23. QA/DV RK 22,23 12 13 21

AMS Assembly Task Sheet (ATS) Continuation Rev 9/25/06 JH

5. Page MITM091217-50 AMS-02 TASK SHEET (ATS) 4. ATS NO. **CONTINUATION PAGE** 6. MOD NO. VERIFICATION 20. OPER SEQ. NO. 21. OPERATIONS (Print, Type, or Write Legibly) 22. TECH 23. QA/DV RK 22,23 2 3 45 21

AMS Assembly Task Sheet (ATS) Continuation Rev 9/25/06 JH

O. OPER SEQ. NO.	21. OPERATIONS (Print, Type, or Write Legibly)											
	Pos	X	Y	Z	Bx	Ву	Bz	ZZ. TECH	23. QA/D\			
- 1		(mm)	(mm)	(mm)	Gauss	Gauss	Gauss					
	1	1500	0	6	-1025	-62.0	-112.3					
	2	2000	0	0	-255	15.9	48.0					
	3	2500	0	0	-81.8	10.4	6.1					
	4	3000	0	0	- 32.4	-2.0	5.2					
	5	4000	0	0	- 7.2	1.3	1.5					
	6	-1500	0	0	- 1080	-64.6	-130.3					
	7	-2000	0	0	-233	-47.3	-16.0					
	8	-2500	0	0	-79.6	11.6	-7.2					
	9	-3000	0	0	-31.5	2.5	-1.3					
	10	-4000	0	0	-7.1	1.5	1.2					
	11	0	2000	0	-112.6	6.5	8.3					
	12	0	3000	0	14.9	1.5	0.4					
	13	0	4000	0	-4.7	1.0	0.1					
		0	-2000	0	-1 72.7	10.4	8.1					
	15	0	-3000	0	-15,2	0.5	0,8					
	16	0	-4000	0	-4.3	0.3	0.1					
	17	2000	2000	0	32.3	2.4	-1.6					
	18	2000	-2000	0	-28.4	7.6	-1.5					
	19	-2000	2000	0	25.5	2.6	1.5					
	20	-2000	-2000	0	28.5	-2.9	1,5					
	21	0	0	-1750	-73.4	4.5	2.2					

5. Page 7 of 7 AMS-02 TASK SHEET (ATS) CONTINUATION PAGE 20. OPER SEQ. NO. 21. OPERATIONS (Print, Type, or Write Legibly) 22. TECH 23. QA/DV

20. OPER		VERIFICATION							
SEQ. NO.		22. TECH	23. QA/DV						
	22	1000	0	2000	15.9	0.5	37.7	RK	
	23	-1000	0	2000	16.7	1.0	-26.2		
	24	1000	-1000	-1250	69.4	-3.0	-145.8		
	25	1000	-1250	-250	205.6	-98.5	-126,2		
	26	1000	-2000	250	54.7	-91.8	3.3		
	27	-1000	-2000	250	45.0	101.6	-14.3		
	28	-1500	-1000	750	161.2	-137.4	57.7		
	#24 – Lower U	SS hand rail	l						
	#25 - +X, -Y U								
	#26 - +X, -Y U								
	#27X, -Y US								
	#28 – Fill port								
5.	Close this ATS		RK						
	0	82							
					35				

---- Forwarded Message

From: Vitaly Choutko < Vitaly.Choutko@cern.ch >

Date: Thu, 18 Feb 2010 04:37:17 -0600
To: Trent Martin < trent.d.martin@nasa.gov>

Subject: RE: Magnetic Field map

Hi Trent please find attached the model predictions

Regards

Vitali CHOUTKO MIT/LNS Vitaly.Choutko@cern.ch

CERN, Div. EP Tel. +41 22 767 9928 Cel. +41 76 487 0923 Fax. +41 22 767 7910

Point	X(mm)	Y(mm)	Z(mm)	Model Ma	-	
					By(G)	Bz(G)
1	1500	0	0	1135.3	0	0
2	2000	0	0	260	0.1	0
3	2500	0	0	82.7	0.1	0
4	3000	0	0	32.5	0	0
5	4000	0	0	7.5	0	0
6	-1500	0	0	1135.1	-0.1	0
7	-2000	0	0	259.8	-0.1	0
8	-2500	0	0	82.7	-0.1	0
9	-3000	0	0	32.5	0	0
10	-4000	0	0	7.5	0	0
11	0	2000	0	133.2	0.4	0
12	0	3000	- 0	18.2	0	0
13	0	4000	0	4.4	0	0
14	0	-2000	0	132.4	-0.9	0
15	0	-3000	0	18	-0.1	0
16	0	-4000	0	4.3	0	0
17	2000	2000	0	-28.3	-0.1	0
18	2000	-2000	0	-28.1	0	0
19	-2000	2000	0	-28.2	0.1	0
20	-2000	-2000	0	-28	0.1	0
21	0	0	-1750	66.8	0	0
22	1000	0	2000	-13.8	0	-19
23	-1000	0	2000	-13.8	-0.1	19.3
24	1000	-1000	-1250	-80	8.3	94.7
25	1000	-1250	-250	-448.4	240	108
26	1000	-2000	250	-31.6	91.1	-17
27	-1000	-2000	250	-31.8	-90.6	17.1
28	-1500	-1000	750	-111.3	94	-16

Enclosure 3: Comparison of Model Predictions to Measured Data

Point	X(mm)	Y(mm)	Z(mm)	Model M	lagnetic	Field	Measure	d Magn	etic Field
				Bx(G)	By(G)	Bz(G)	Bx(G)	By(G)	Bz(G)
1	1500	0	0	1135.3	0	0	-1025	-62	-112.3
2	2000	0	0	260	0.1	0	-255	15.9	48
3	2500	0	0	82.7	0.1	0	-81.8	10.4	6.1
4	3000	0	0	32.5	0	0	-32.4	-2	5.2
5	4000	0	0	7.5	0	0	-7.2	1.3	
6	-1500	0	0	1135.1	-0.1	0	-1080	-64.6	
7	-2000	0	0	259.8	-0.1	0	-233	-47.3	-16
8	-2500	0	0	82.7	-0.1	0	-79.6	11.6	
9	-3000	0	0	32.5	0	0	-31.5	2.5	-1.3
10	-4000	0	0	7.5	0	0	-7.1	1.5	1.2
11	0	2000	0	133.2	0.4	0	-112.6	6.5	8.3
12	0	3000	0	18.2	0	0	14.9	1.5	
13	0	4000	0	4.4	0	0	-4.7	1	0.1
14	0	-2000	0	132.4	-0.9	0	-122.2	10.4	8.1
15	0	-3000	0	18	-0.1	0	-15.2		
16	0	-4000	0	4.3	0	0	-4.3	0.3	
17	2000	2000	0	-28.3	-0.1	0	32.3	2.4	
18	2000	-2000	0	-28.1	0	0	28.4	2.6	
19	-2000	2000	0	-28.2		0	25.5	2.6	
20	-2000	-2000	0	-28	0.1	0	28.5	-2.9	
21	0	0	-1750	66.8	0		-73.4		
22	1000	0	2000	-13.8	0			0.5	
23	-1000	0					16.7	1	
24	1000	-1000	-1250	-80	8.3		69.4	-3	
25	1000	-1250	-250	-448.4	240				
26	1000	-2000	250	-31.6	91.1	-17			
27	-1000	-2000	250	-31.8	-90.6				
28	-1500	-1000	750	-111.3	94	-16	161.2	-137	57.7

Point	X(mm)	Y(mm)	Z(mm)	RSS Model	RSS Measured	RSS Difference	% Difference
1	1500	0	0	1135	1033	102	9.9
2	2000	0	0	260	260	0	0.0
3	2500	0	0	83	83	0	0.0
4	3000	0	0	33	33	0	-1.1
5	4000	0	0	8	7	0	0.4
6	-1500	0	0	1135	1090	45	4.2
7	-2000	0	0	260	238	22	9.0
8	-2500	0	0	83	81	2	2.4
9	-3000	0	0	33	32	1	2.8
10	-4000	0	0	8	7	0	2.0
11	0	2000	0	133	113	20	17.8
12	0	3000	0	18	15	3	21.5
13	0	4000	0	4	5	0	-8.5
14	0	-2000	0	132	123	9	7.7
15	0	-3000	0	18	15	3	18.2
16	0	-4000	0	4	4	0	-0.3
17	2000	2000	0	28	32	-4	-12.7
18	2000	-2000	0	28	29	0	-1.6
19	-2000	2000	0	28	26	3	9.8
20	-2000	-2000	0	28	29	-1	-2.4
21	0	0	-1750	67	74	-7	-9.2
22	1000	0	2000	24	41	-17	-42.2
23	-1000	0	2000	24	31	-7	-23.7
24	1000	-1000	-1250	124	162	-37	-23.1
25	1000	-1250	-250	520	261	259	
26	1000	-2000	250	98	107	-9	-8.4
27	-1000	-2000	250	98	112	-15	-12.9
28	-1500	-1000	750	147	220	-73	-33.2